On the minimum leaf number of cubic graphs

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the fixed number of graphs

‎A set of vertices $S$ of a graph $G$ is called a fixing set of $G$‎, ‎if only the trivial automorphism of $G$ fixes every vertex in $S$‎. ‎The fixing number of a graph is the smallest cardinality of a fixing‎ ‎set‎. ‎The fixed number of a graph $G$ is the minimum $k$‎, ‎such that ‎every $k$-set of vertices of $G$ is a fixing set of $G$‎. ‎A graph $G$‎ ‎is called a $k$-fixed graph‎, ‎if its fix...

متن کامل

On the saturation number of graphs

Let $G=(V,E)$ be a simple connected graph. A matching $M$ in a graph $G$ is a collection of edges of $G$ such that no two edges from $M$ share a vertex. A matching $M$ is maximal if it cannot be extended to a larger matching in $G$. The cardinality of any smallest maximal matching in $G$ is the saturation number of $G$ and is denoted by $s(G)$. In this paper we study the saturation numbe...

متن کامل

On the super domination number of graphs

The open neighborhood of a vertex $v$ of a graph $G$ is the set $N(v)$ consisting of all vertices adjacent to $v$ in $G$. For $Dsubseteq V(G)$, we define $overline{D}=V(G)setminus D$. A set $Dsubseteq V(G)$ is called a super dominating set of $G$ if for every vertex $uin overline{D}$, there exists $vin D$ such that $N(v)cap overline{D}={u}$. The super domination number of $G$ is the minimum car...

متن کامل

The domination number of cubic Hamiltonian graphs

Let γ(G) denote the domination number of a graph, and let C be the set of all Hamiltonian cubic graphs. Let γ̄(n) = max {γ(G)| G ∈ C and |V (G)| = n} , and γ(n) = min {γ(G)| G ∈ C and |V (G)| = n} . Then, for n ≥ 4, n even, γ̄(n) = ⌊ n + 1 3 ⌋ and γ(n) = ⌊ n + 2 4 ⌋ .

متن کامل

The b-Chromatic Number of Cubic Graphs

The b-chromatic number of a graph G is the largest integer k such that G admits a proper k-coloring in which every color class contains at least one vertex adjacent to some vertex in all the other color classes. It is proved that with four exceptions, the b-chromatic number of cubic graphs is 4. The exceptions are the Petersen graph, K3,3, the prism over K3, and one more sporadic example on 10 ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Mathematics

سال: 2019

ISSN: 0012-365X

DOI: 10.1016/j.disc.2019.06.005